The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams

نویسندگان

  • Shin-ichiro Masunaga
  • Akiko Uzawa
  • Ryoichi Hirayama
  • Yoshitaka Matsumoto
  • Yoshinori Sakurai
  • Hiroki Tanaka
  • Keizo Tano
  • Yu Sanada
  • Minoru Suzuki
  • Akira Maruhashi
  • Koji Ono
چکیده

BACKGROUND The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells. METHODS Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays or accelerated carbon-ion beams at a high or reduced dose-rate. Other tumor-bearing mice received reactor thermal or epithermal neutrons at a reduced dose-rate. Immediately or 9 hours after the high dose-rate irradiation (HDRI), or immediately after the reduced dose-rate irradiation (RDRI), the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. RESULTS The difference in radiosensitivity between the total (P + Q) and Q cells after γ-ray irradiation was markedly reduced with reactor neutron beams or carbon-ion beams, especially with a higher linear energy transfer (LET) value. Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. In both total and Q cells within both SAS/neo and SAS/mp53 tumors, carbon-ion beam irradiation, especially with a higher LET, showed little recovery capacity through leaving an interval between HDRI and the assay or decreasing the dose-rate. The recovery from radiation-induced damage after γ-ray irradiation was a p53-dependent event, but little recovery was found after carbon-ion beam irradiation. With RDRI, the radiosensitivity to reactor thermal and epithermal neutron beams was slightly higher than that to carbon-ion beams. CONCLUSION For tumor control, including intratumor Q-cell control, accelerated carbon-ion beams, especially with a higher LET, and reactor thermal and epithermal neutron beams were very useful for suppressing the recovery from radiation-induced damage irrespective of p53 status of tumor cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

OBJECTIVES To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). METHODS EL4 tumour-bearing C57BL/J mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated w...

متن کامل

Metformin enhances the radiosensitivity of human liver cancer cells to γ–rays and carbon ion beams

The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ-rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ-rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, D...

متن کامل

Modification of 10 cGy neutron or gamma-rays induced chromosomal damages by hyperthermia: an in vitro study

Background: To evaluate the effects of hyperthermia (HT) on the frequency of chromosomal aberrations induced by a low dose of neutron or γ-rays in human peripheral blood lymphocytes. Materials and Methods: Blood samples were exposed to HT (41.5°C for 30 and 60min, 43°C for 15 and 30min), 10 cGy neutron or γ-rays, HT + neutron/γ, and neutron/γ + HT. After standard cell culture, harvestin...

متن کامل

A Monte Carlo Study on Dose Enhancement by Homogeneous and Inhomogeneous Distributions of Gold Nanoparticles in Radiotherapy with Low Energy X-rays

Background: To enhance the dose to tumor, the use of high atomic number elements has been proposed.Objective: The aim of this study is to investigate the effect of gold nanoparticle distribution on dose enhancement in tumor when the tumor is irradiated by typical monoenergetic X-ray beams by considering homogeneous and inhomogeneous distributions of gold nanoparticles (GNPs) in the tumor.Method...

متن کامل

Radioresponse of human lymphocytes pretreated with boron and gadolinium as assessed by the comet assay

Background: Boron and gadolinium are among the nuclides that hold a unique property of being a neutron capture therapy agent. Neutron beams have often a considerable portion of gamma rays with fast neutrons. Gamma rays, as beam contaminants, can cause considerable damage to normal tissues even if such tissues do contain high boron concentrations. Materials and Methods: The modification of radio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015